To Well Logging

Introduction to Well Logging

Wireline and LWD Evaluation Tools

Introduct **Petroleum Industry Overview** To Well Logging Management **Field Management** Geology GeoPhysics **Artificial Lift** Drilling Integration Identification Drilling Evaluation Teamwork Completion Assembly Tools Completion Logging **Production** Wireline Fluids LWD Production **Enhancement** Logging Wireline Perforating Testing Cementing

Logging for Evaluation

To Well Logging

Logging for Evaluation

Wireline Logging

To Well Logging

To Well Logging

To Well Logging

What do we measure?

- Borehole sizes
- Porosity
- Density
 - Lithology
- Fluids Saturation
 - Water?
 - Hydrocarbon?

density

To Well Logging

To Well Logging

Clays / Shale

Clays / Shale

Clays / Shale - Very Harming to Reservoirs

To Well Logging

Reservoir Porosity Neutron

Density Tool

D

Clay / Shale finding

Rock Lithology

To Well Logging

Basic Wireline/LWD Logging Tools Caliper Tool
Gamma Ray Tool

Density Tool

Transmitters

Wearband

Transmitters

Resistivity Tool

Properties

To Well Logging

To Well Logging

How does each tool work?

To Well Logging

How does each tool work? What does each tool measure?

Review Your Physics Courses

Petro-Physics .

To Well Logging

Caliper Tools for Borehole size

- Why
 - Washout while drilling
 - Washout after drilling
 - Clays swelling
 - Rock deterioration

To Well Logging

Caliper Tools for Borehole size

- Why
 - Washout while drilling
 - Washout after drilling
 - Clays swelling
 - Rock deterioration

- 2 arms caliper
- 4 arms caliper
- 6 arms caliper

To Well Logging

Caliper Tools for Borehole size

- Why
 - Washout while drilling
 - Washout after drilling
 - Clays swelling
 - Rock deterioration

- 4 arms caliper
- 6 arms caliper

To Well Logging

6 arms caliper

Clay Zones Evaluation

Physics:

- Clays are Radioactive
- ✓ They contain radioactive elements
 - ✓ Potassium K
 - ✓ Thorium Th

To Well Logging

Clay Zones Evaluation

Physics:

- Clays are Radioactive
- ✓ They contain radioactive elements
 - ✓ Potassium K
 - ✓ Thorium Th
- ✓ They emit gamma rays

Detection:

measure the gamma rays

To Well Logging

Gamma Ray Tool For Clays

To Well Logging

Composition of fluids in pores

Water

Oil or gas

Composition of fluids in pores

- Water
 - H2O
 - Hydrogen and Oxygen
- Oil or gas
 - Hydro-Carbon
 - Hydrogen and Carbon
- Both water and Hydrocarbon have a common atom

Hydrogen

To Well Logging

Composition of fluids in pores

- Water
 - H2O
 - Hydrogen and Oxygen
- Oil or gas
 - Hydro-Carbon
 - Hydrogen and Carbon
- Both water and Hydrocarbon have a common atom

Hydrogen

If you measure Hydrogen atoms, this can be translated to Porosity

To Well Logging

Neutron collides with formation atoms

Lowest Final Energy
$$\mathbf{E}_{f} = \left(\frac{A_2 - 1}{A_2 + 1}\right)^2 \mathbf{E}_{i}$$

To Well Logging

Neutron collides with formation atoms

Lowest Final Energy
$$\mathsf{E}_{\mathsf{f}} = \left(\frac{A_2 - 1}{A_2 + 1}\right)^2 \mathsf{E}_{\mathsf{i}}$$

Lowest Final Energy if it collides with Hydrogen
$$E_f = \left(\frac{1-1}{1+1}\right) E_i$$
 $E_f = 0$

To Well Logging

Porosity Measurements The Neutron Tool

Physics:

- ✓ Use a neutron source
- ✓ Let the neutrons collide with atoms

Detection:

✓ Count the number of neutrons coming back

To Well Logging

The Neutron Tool

- Uses a neutron source
- Usually (AmBe)
- Uses neutron detectors

The source emits very high energy neutrons into the formation

To Well Logging

The Neutron Tool

- Uses a neutron source
- Usually (AmBe)
- Uses neutron detectors

The source emits very high energy neutrons into the formation

To Well Logging

The Neutron Tool

- Uses a neutron source
- Usually (AmBe)
- Uses neutron detectors

To Well Logging

The Neutron Tool

To Well Logging

The Neutron Tool

- Uses a neutron source
- Usually (AmBe)
- Uses neutron detectors

To Well Logging

Fluids Saturation

Introduction To Well Logging

Fluids Saturation Hydrocarbon or Water?

Physics:

- ✓ Water is conductive
- ✓ Oil / gas are resistive

To Well Logging

Rock Resistivity

Rock Composition

D

To Well Logging

Resistivity Tools

To Well Logging

Resistivity Tools - Lateral Resistivity Tools

To Well Logging

Resistivity Tools - Lateral Resistivity Tools

Introduction To Well Logging

Resistivity Tools - Lateral Resistivity Tools

To Well Logging

Never Forget this

- NONE Reservoir properties on LOGS
 - High Gamma Ray
 - Low Resistivity

To Well Logging

Resistivity Tools in Resistive Mud

To Well Logging

Resistivity Tools in Resistive Mud

To Well Logging

To Well Logging

Resistivity Tools in Resistive Mud

To Well Logging

Resistivity Tools in Resistive Mud

To Well Logging

Density Measurement

To Well Logging

Resistivity Tools in Resistive Mud

To Well Logging

Density Measurement

Physics:

✓ What is density?

$$\rho = \frac{M}{V} \qquad \qquad \rho = \frac{M}{1} = M$$

- Measuring mass will relate to density
- Mass of atoms relate to neutrons and protons in the nucleus

To Well Logging

Density Measurement

Physics:

✓ What is density?

$$\rho = \frac{M}{V} \qquad \qquad \rho = \frac{M}{1} = M$$

- Measuring mass will relate to density
- Mass of atoms relate to neutrons and protons in the nucleus
- ✓ In our rocks (non-radioactive)
 - ✓ # electrons = # protons = # neutrons

To Well Logging

Density Tool

D

To Well Logging

Density Tool

To Well Logging

Sonic Tools

Physics:

- ✓ Sonic (sound) wave
- ✓ When sent into the rock
 - Compresses grains
 - ✓ Shears grains

Sonic Tools - Detection: Sound Listening Tools

Physics:

- ✓ Sonic (sound) wave
- ✓ When sent into the rock
 - Compresses grains
 - ✓ Shears grains
- From this, we can find out the rock strength

To Well Logging

Sonic Wave motion in a formation

To Well Logging

The Sonic Tool

Long spaced sonic tools have transmitter and receivers which allow for a greater depth of formation investigation

The transmitter emits sound wave into the formation

The receivers measure the travel time (At) it takes the compressiol wave to go through the formation and reach the receivers

Introduction To Well Logging

The Sonic Tool

To Well Logging

Conclusions

- Many tools are available for formation rock evaluation
- Each tool uses
 - Physical property to measure
 - Tool design to capture the rock property
 - Porosity
 - Clays
 - Density
 - Fluids saturation
 - Rock strength (mechanical properties)
- The combination of tools you run is dependent on what you want to evaluate

Introduction To Well Logging

Thank You

Wish you all the best in your career